
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 13, 1029-1053 (1991) 
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SUMMARY 
This paper presents a numerical technique for the simulation of the effects of grey-diffuse surface radiation 
on the temperature field of fluid flows using FIDAP, a general purpose incompressible, viscous fluid code. 
The radiating surface relationships assume a non-participating medium, constant surface temperature and 
heat fluxes at the discretized elemental level. 

The technique involves the decoupling of energy and radiation exchange equations. A concept of 
macrosurfaces, each containing a number of radiating boundary surfaces, is introduced. These boundary 
macroelements then carry the information from the radiating boundary into the fluid regime. A number of 
simulations illustrating the algorithm are presented. 
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INTRODUCTION 

Radiation heat transfer plays an important role in engineering. In some applications such as 
boilers, industrial furnaces, rocket propulsion, etc., the medium with its absorbing, emitting and 
scattering properties plays just as important a role as radiation exchange between the boundaries. 
In other types of problems such as honeycomb solar collector panels and automobile air- 
conditioning, only the radiation heat exchange between the boundary surfaces need be con- 
sidered. Many authors 1-5 have considered participating media and have developed theories and 
solution methods for a variety of conditions. For a review paper on the recent advances in this 
area see Reference 6. 

Reference 7 discusses radiation phenomena in great detail and presents the required theory, 
formulae and relationships for general and special cases. One of the special cases considered 
herein is when the radiating surfaces are grey-diffuse and the medium is non-participating. The 
work of Holland et al.* deals with honeycomb panels when radiation and conduction effects are 
coupled. This work is of both experimental and analytic nature. 

Kassemi and Duvalg studied the effects of wall radiation in crystal growth problems in a 
rectangular domain. References 10-1 3 considered the radiation heat transfer problem in 
Czochralski pullers. Crochet et a l l 4  dealt with a similar problem in a vertical Bridgman furnace. 

In this paper the finite element method is used to predict the non-participating medium’s 
behaviour when the boundary surfaces are considered to be grey-diffuse and radiating. Of 
particular concern is the fact that the temperature field may be coupled with the flow field 
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through natural or forced convection. The concept of macrosurfaces is introduced; the macrosur- 
face acts as an interface between the radiating boundary surface and the finite element boundary. 
Three problems are solved to test and verify the algorithm. A more realistic sample problem from 
the electronics industry is also solved which includes blocking surfaces as well as heat sources and 
buoyancy-driven flow. The results from this simulation are compared with the case when 
radiation is not taken into account. 

GOVERNING EQUATIONS 

Consider an enclosure consisting of N grey-diffuse surfaces with ej as the emissivity of the jth 
surface. Suppose that the incompressible fluid enveloped by this enclosure is non-participating 
and that the view factor matrix is given by the fij-tensor. To evaluate the velocity, pressure and 
temperature fields in the fluid, the conservation equations of mass, momentum and energy in 
conjunction with appropriate boundary conditions are required: 

momentum equation, 

continuity equation, 

energy equation, 

boundary conditions, 

u. I = u. oi=oijnj=Ci, T=F, q =  -(kT,j)nj=qa+qc+qr, (Id) 
where cp is the specific heat at constant volume, ej is the emissivity of surfacej,f,’ is the body force 
vector, gi  is the gravitational force vector, k is the thermal conductivity, ni is the surface normal 
vector, P is the fluid pressure, qa is the applied heat flux, qE is the convective heat flux, qr is the 
radiative heat flux, qs is the heat source, T is the temperature, To is the reference temperature, t is 
time, ui are Eulerian fluid velocity components, PT is the thermal volume expansion coefficient, 
pis the dynamic viscosity, p is the density, cij is the stress tensor, ui is the surface stress vector and 
o is the Stefan-Boltzmann constant. 

For transient problems initial conditions are also required. In this paper we will restrict our 
attention to the energy equation and the associated radiation boundary conditions. For detailes 
on the momentum and continuity equations and their solution using the finite element method 
the reader is referred to Reference 15. 

The energy equation relates the properties of the fluid to the temperature and how heat is being 
distributed in the fluid as well as from its boundaries. For a medium with grey-diffuse radiating 
boundaries, an additional equation is required which describes how the heat is being exchanged at 
the radiating boundaries regardless of the fluid. The heat exchange relationship between the 
radiating boundaries is given by 

N 

j =  1 
= (6ij-Fij)cT4, i = l , .  . . , N ,  
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where qj  is the radiative heat flux and Tj is the temperature of thejth surface. Note that the sum of 
the qj  computed in equation (2) is the 4,-term in the boundary condition equation (Id). Thus the 
coupling between the two equations is through the q,-term. The derivation of equation (2) is 
discussed in detail by Siege1 and H ~ w e l l . ~  The major assumptions in deriving this equation are 
uniform temperature for each radiating surface as well as grey-diffuse surfaces. 

It should be noted that equation (2) can only be solved once the view factors F i j  are known. The 
next section provides an outline of the techniques used to calculate the view factors. 

VIEW FACTOR CALCULATIONS 

Calculation of radiative energy exchange between any two surfaces requires determining the 
geometrical configuration factor, or view factor, between the two surfaces. For two black bodies 
the view factor is defined as the fraction of the diffusely distributed radiant energy leaving one 
surface i that arrives at a second surface j :  

cos Bi cos pj dAidAj 
rcr2 > (3) 

where Ai and A j  are the areas of surfaces i and j respectively and pi and pj  are the angles between 
the position-dependent normal vectors to surfaces i and j and a line of length r connecting the 
points of evaluation of the normals (see Figure 1). 

The derivation of equation (3) can be found in Reference 7. The basic assumptions used in 
deriving equation (3) are (i) the two surfaces are diffusively emitting and reflecting and (ii) the two 
surfaces are isothermal. As a result of these assumptions, the view factor depends only on the 

Figure 1. View factor calculation 
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geometry of the system. It is also important to note that for each 
N 

surface i, 

2 Fi,= 1, 
j =  1 

where N is the number of surfaces. 
In the calculation of the view factors, equation (3) is not used directly; rather, different strategies 

are employed depending on whether the model is 3D, 2D or axisymmetric. Details of these 
algorithms and a complete discussion of the entire view factor calculation can be found in 
Reference 16. The view factor calculation in FIDAP is largely based on the FACET code.I6 

Shadowing algorithms 

The major complication with the view factor calculation is the possibility of partial blocking or 
'shadowing' between two surfaces by an intervening body. Three types of shadowing may exist 
between two surfaces: total self-shadowing, partial self-shadowing and third-surface shadowing. 
The various possibilities are illustrated in Figure 2. Total or partial self-shadowing can be 
detected between two surfaces by looking at the angles pi and pj (Figure 1). If cos f l i  > 0 and 
cosfij>O, then the two surfaces can 'see' each other. This is equivalent to verifying that 

rij .ni>O and r j i - n j > O ,  (4) 

where rij is defined in Figure 3. For N-sided plane polygons it is necessary to verify these dot 
product inequalities for all vectors r connecting the N corner points between the two surfaces, a 
total of 2N checks. If equation (4) is not satisfied for all r,, (my n =  1, . . . , N), then there is total 
self-shadowing. If equation (4) is satisfied for some r,, then there is partial self-shadowing. 

For situations where partial self-shadowing or third-surface shadowing exists, the view factor 
can be calculated by first subdividing the two surfaces for which the view factor is being computed 
into n finite surfaces. Contributions to the view factor are not included for those surfaces in which 

i. kn 
a )  no shadowing b)  p a r t i a l  shadowing 

I "  
/ I 

T "  

c )  t o t a l  shadowing d) t h i r d  sur face  shadowing 

Figure 2. Surface orientations for shadowing 
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/ 
X 

Figure 3. Third-surface shadowing 

the ray rij fails to satisfy (4) or intersects with another surface-this procedure is illustrated in 
Figure 3. The computed view factor increases in accuracy as the number n of subsurfaces is 
increased. 

Third-surface shadowing can be detected by determining if a line connecting the centroids of 
the two surfaces for which a view factor is being calculated intersects other enclosure surfaces. The 
accuracy of this detection scheme can be improved if the lines connecting the corner points of the 
polygon are also checked for intersection with other enclosure surfaces. Unless those surfaces that 
can be shadowing surfaces are specifically designated as blocking or obstructing surfaces, all 
enclosure surfaces must be checked for each pair of surfaces for which a view factor is being 
calculated. This can be a very time-consuming computation, particularly for three-dimensional 
geometries. Fortunately, the view factor computation is required only once for a given geo- 
metrical configuration. 

FINITE ELEMENT IMPLEMENTATION 

As noted earlier, the key equations required for the determination of the temperature field in the 
fluid are the energy equation and the radiation heat exchange equation. The energy equation is a 
continuum equation whereas the radiation heat exchange relationship is already a discrete 
equation. Therefore only the energy equation needs to be discretized using the finite element 
method. Applying the Galerkin finite element method in the usual fashion (refer to Reference 15 
for complete details), the following set of matrix equations is arrived at: 

MT + KT + A(u)T = F + ( 5 )  

where 
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qa is the applied heat flux, qc is the convective heat flux, 4r is the radiative heat flux, qs is the heat 
source term and 9 is the element shape. function vector for temperature. 

The term Jqr9dS couples equation (5) with the radiative exchange equation (2). In the 
subsequent discussion the edge (or face) of an element on the edge of the computational domain 
will be referred to as a boundary element. Assuming that qr is constant for a given boundary 
element, the energy and radiative exchange equations can be written 

where 

D=(Dij), Dij=(6i j -Fi j )oT; (no summation on j ) ,  

B=(Bkj) ,  Bkj= r9ds,  s 
q = (4 j ) .  

In the above expressions the subscripts i and j pertain to the boundary elements (i.e. i , j= 1, N) 
whereas the subscript k refers to the nodal points comprising the boundary radiating surfaces (i.e. 
k =  1, NB,  where N B  is the total number of nodes defining the boundary elements). is the shape 
function associated with the constant heat flux for each boundary element. 

In matrix notation, for a steady state problem, equations (6) and (7) may be written as 

["" J[ 3 = [:I], 
A21 A22 

where 

A11 =K+A(u), A12 =B, Al l  =(6,- Fij)aTj3 (no summation on j ) ,  A,, =C, 

The main assumption in this formulation is that each element side (or face) at the boundary is a 
radiation surface which has constant properties. 

In practice, the above approach has a number of serious drawbacks. 

1. The radiation exchange equations couple the information of every node on the boundary to 
every other node on the boundary. If the matrix system (8) is solved as a coupled system, 
there will be a very substantial increase in the bandwidth of the global coefficient matrix, 
with an accompanying significant increase in computational cost. 
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2. The view factor calculations may become prohibitively expensive owing to the large number 

3. D(T) is highly non-linear. 

To prevent the increase in bandwidth, rather than solving equation (8) as a fully coupled 
system, an alternative approach is to solve equation (7) first (for a given temperature field) and 
then use the resultant heat flux values in equation (6) as applied boundary conditions. This 
approach effectively decouples equations (6) and (7). 

of radiating surfaces that have to be accommodated. 

The decoupling of equation (8) as described above leads to the equations 

These equations can now be solved in a sequential manner as follows. 

(a) Equation (10) is solved for a ‘given’ temperature field. 
(b) The calculated q-vector is then used in equation (9) to calculate a new temperature field- 

the successive substitution (or Picard iteration) approach is used to solve equation (9). (It 
should be noted that equation (9) cannot be solved independently of the Navier- 
Stokes equations if convection exists.) 

(c) Steps (a) and (b) are repeated until convergence is achieved. 

Alternatively, a Newton-Raphson formulation for solving equations (9) and (10) can also be 
employed. In this case the equations to be solved become 

where 

F,=KT+A(u)Ti Bq=O, (12) 
F, = Cq + DT = 0, 

aF, aF, - 

a ~ ,  aFz 
J =  [i, ag 

The various entries in the Jacobian number are computed by 

dF1 1 -B, aF2 - 1 I--F, l - e  -=-4D. aF2 -=K+A(u), -- 
aT aq aq e e aT 

Thus equation (14) can be rewritten as 



1036 M. ENGELMAN AND M.-A. JAMNIA 

The solution of equation (15) can be segregated in a similar manner to successive substitution as 
follows: 

(;I- Aq = F, - 4 4 1  -F)T3AT,  
e 

~ i +  1 = ~i + AT, 

q’+l=q’+Aq. 

Again equation (17) is solved first and then the results are used to solve equation (16). 

Numerical damping 

Owing to the high non-linearity of the radiation exchange equations, in particular the 
dependence on T4, we have found that the use of relaxation (i.e. numerical damping) during the 
solution iteration process is almost mandatory. The relaxation is performed in a standard fashion 
as follows: 

qi+l=( l -a)q?+l+aqi ,  

i.e. after solving for the solution qr+ , at iteration i + 1, the final solution qi+ , at this iteration is 
formed from q?+ , and the solution at the previous iteration qi using the foregoing equation. a is 
the relaxation factor, where zero corresponds to no relaxation, i.e. qi+ = qT+ ,, and unity to the 
other extreme, i.e. qi + , = qi.  In most of the simulations presented in this paper a relaxation factor 
between 0 3  and 0.9 was employed. 

Macrosurface 

As described above, the side (or face) of each element on the boundary of the fluid domain may 
be considered as a radiating surface. In order to reduce the view factor computation cost, if 
temperature does not vary significantly over a part of the boundary, an alternative approach is to 
‘lump’ together elements on the boundary and consider this group of element sides as a 
‘macrosurface’ for radiation exchange and view factor computation purposes. This approach 
substantially reduces the size of the matrices A,, and D. Another advantage is that the number of 
view factors that must be calculated can be significantly reduced. 

Thus a macrosurface is a collection of adjacent element sides (in 2D) or element faces (in 3D). 
Each element side (or face) has various quantities such as area, temperature, emissivity, etc. 
associated with it. In order to use the macrosurface approach, each macrosurface must have an 
effective temperature and emissivity associated with it. Given a quantity 4k associated with node 
k of an element side (or face) i, the effective value of this quantity, @, for the macrosurface 
comprised of N element sides is computed by 

where A t  is the area of element i, A ,  is the area of the macrosurface (i.e. X A , ) ,  N is the number of 
elements in the macrosurface, n is the number of nodes in each element, cik = (JgikdA)/Ai is an 
‘averaged’ shape function for element i and Eli, is the shape function at node k of element i. 
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Thus equation (18) can be used to ‘lump’ the elemental quantities of temperature or emissivities 
into surface quantities. These values are then used in equation (10) or (17) to calculate the heat 
flux. This heat flux is assumed to be constant for all the elements comprising the surface. The 
elemental values for heat flux due to radiation can then be used as boundary conditions for the 
energy equation. 

Radiation boundary conditions at inflows and outflows 

When simulating fluid flows, the computational domain is often truncated relative to the 
physical domain; also, the computational domain often includes boundaries where inflow or 
outflow of fluid is taking place. Since the radiation exchange equation (2) is based on a closed 
enclosure assumption, some modification must be made to accommodate such openings or 
‘windows’. The boundary condition for heat exchange at such an opening must not allow any 
emission of energy back into the enclosure. 

The derivation of the correct boundary condition is straightforward: consider the configuration 
shown in Figure 4. 

Let the opening surface be i and assume that there is a plane parallel to surface i at infinity such 
that the view factors between the surface i and the rest of the enclosure are identical to the view 
factors between the surface at infinity and the rest of the enclosure. The heat exchange h q k  
between a typical surface k and the surface at infinity (assuming that the surface at infinity is 
black) is given by 

A& =CJFik(T: -f?kT:), (19) 

where Tk is the temperature of surface k and T, is the radiation source/sink reference temperature 
for the opening. 

The total heat exchange between the surface i and the surface at infinity is the sum of the Aqk for 
all surfaces k, i.e. 

N 

qi’ A q k .  
k =  1 

surface at ti infinity 

Figure 4. Opening boundary condition 
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Substituting equation (19) in equation (20), we arrive at the result for the total heat flux through 
the opening surface i: 

N 

j =  1 
i # j  

q i = o T t -  1 o e j F i j T 4 .  

This value of qi is applied as a boundary condition for the solution of equation (2). One should 
note that since the medium is non-participating, the fluid temperature at the opening is not 
directly affected. Morevoer, any applied fluid temperature does not directly interface with 
radiation at that boundary. 

EXAMPLES AND ILLUSTRATIONS 

To validate and illustrate the implementation described in the previous sections, the solutions to 
five example problems are presented in this section. The first problem is a simple problem with 
an analytical solution that serves as a test case for verifying the opening/window boundary 
condition. The second and third examples are problems that have been studied by Holland et aZ.* 
and Kassemi and Duvalg and serve as benchmark problems for testing the accuracy of the 
algorithm. The fourth problem is flow over a heat-generating step in a vertical channel. The last 
problem is a more realistic problem from the field of electronics packaging consisting of the flow 
of air past multiple heat-generating chips surrounded by walls of porous material. This problem 
involves conduction within the solid, porous and fluid materials as well as convection within the 
fluid. As well as radiation boundary conditions, convection-cooling boundary conditions, are 
also present on the outside walls. 

The first four problems were run in a non-dimensional form appropriate to the problem under 
consideration. Depending on the problem, the non-dimensional numbers involved include the 
Peclet, Prandtl, Rayleigh and/or Reynolds numbers. When equation (2) is cast in non-dimen- 
sional form, a non-dimensional coefficient Rad appears as the coefficient of the T4-term. Rad is 
defined by 

k 

Rad can be thought of as a non-dimensional ‘Stefan-Boltzmann’ constant and we will refer to it as 
the Radiation number. 

In all the simulations described in this paper, four-node linear quadrilateral finite elements 
have been employed, although the algorithm has been implemented for linear and quadratic 
quadrilaterals and triangles. 

Pan-in-the-desert problem 

It is well known that in a desert, water in a pan can freeze at nights in ambient temperatures 
which are well above the freezing point of water owing to the radiation of heat to the 
environment. This phenomenon is simulated here for a quasi-one-dimensional case where the 
surface of the pan radiates heat energy to the environment. The geometry and boundary 
conditions are summarized in Figure 5(a). For simplicity, two major assumptions were made: no 
convection in the fluid and no convective heat transfer from the top surface of the fluid to the 
environment. In other words, only the energy equation with the appropriate boundary conditions 
needs to be solved. The boundary conditions include an applied temperature at the top surface 
and a flux boundary condition at the bottom surface. This flux is the same as the heat radiating 
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I Open Surface 1 m 
CIpplied Temperature = 1.63 

I -  
Radiating s u r f a c e  

Figure 5(a). Pan-in-the-desert model 
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Figure 5(b). Pan-in-the-desert problem: temperature profile 
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* 

N m 
02 m 
0 

v -- 

from the bottom of the pan ( q  = a(T4 - T;),  where To is the temperature at infinity). The problem 
was solved in a non-dimensional form with the computational domain being a square of height 
of 1.0. The finite element model had 10 elements horizontally and 10 elements vertically. The 
boundary conditions were adiabatic on the vertical sides and an applied temperature of 1.0 at the 
top surface. The grey-body radiation surfaces were the bottom surface, which was assumed to be 
black, and the other three boundaries, which were declared as open surfaces with a sink 
temperature of zero. The Radiation number was 0.588 766. The computed solution using the 
proposed method resulted in a temperature of 0.7809 for the bottom surface, which is about 22% 
lower than the ambient value. The analytical solution, which is obtained by solving the one- 
dimensional heat conduction equation subjected to the flux boundary described above, produces 
a value of 0.7809 for the temperature of the pan surface. A plot of the temperature distribution 
vertically through the fluid is shown in Figure 5(b). 

4 b 

I .  . 

e .45 

T = 386 
e .88 

-- ------- 

Solar panel collector 

This example was suggested by Holland et a1.’ and models the heat transfer problem in a single 
solar panel collector cell. The geometry and boundary conditions are summarized in Figure 6(a). 
In this problem convection plays a relatively minor role and is ignored. Therefore the momentum 
and continuity equations are not solved and the convective term is dropped from the energy 
equation. Holland et al. studied the variation of the radiation heat transfer coefficient between the 
end surfaces as a function of several variables such as surface finish, specular dependence, etc. 
Herein, one of Holland’s test cases was duplicated in order to verify the implementation of the 
algorithm. It should be mentioned that his numerical formulation is based on a specular wall 
surface; however, the end plates can be modelled as either diffuse or specular. Therefore a certain 
amount of discrepancy between the results of his model and this formulation is to be expected. 
The panel cell was a cylinder with a radius of 0.0053 m and a length of 0.0633 m-for modelling 
purposes an axisymmetric geometry was assumed. The finite element mesh employed had 10 
elements in the radial direction and 50 elements in the axial direction. The problem was modelled 
with a wall surface emissivity of 0.45 and three different end surface emissivities of 0.88/0.88, 
0.88/0*065 and 0065/0.065, respectively, where the first number refers to the emissivity of the cold 
plate and the second one refers to the emissivity of the hot plate. (Again, in Holland’s formulation 
the value of 0.065 indicates the specular dependence of the surface.) The end surfaces had an 
applied temperature of 306 on one end and an applied temperature of 298 on the other end. For 
grey-body radiation purposes each end plane was specified as one macrosurface and the shell of 
the cylinder was divided into 10 radiation surfaces. The problem was non-dimensionalized using 
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Figure 6(b). Solar panel collector: axial temperature variation, hot wall emissivity 0.88, cold wall emissivity @88 
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Figure 6(c). Solar panel collector: axial temperature variation, hot wall emissivity 088, cold wall emissivity 0065 
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Figure 6(d). Solar panel collector: axial temperature variation, hot wall emissivity 0.065, cold wall emissivity 0.065 

a characteristic length of 0.01 m and a characteristic temperature of 300 degrees. i h e  resultant 
Radiation number was 0.588 766. The computed temperature distribution matched Holland's 
reported results within 2%. The solution procedure employed was successive substitutions (each 
case converged to a residual of 1.0 x in the solution vector in eight iterations) with a 
relaxation factor of 0.3. A plot of the temperature as a function of the distance between the end 
plates is presented in Figures 6(b)-6(d). 

Crystal growth problem 

Kassemi and Duvalg studied the effects of radiation in a crystal growth environment. In this 
problem the effect of convection which was ignored in the previous cases is now taken into 
consideration. Therefore both the continuity and momentum equations are solved. The velocity 
boundary conditions employed here do not exactly match those of Kassemi; in his work he 
assumed that material dissolves from the hot vertical wall and deposits on the cold opposing wall. 
Since this species removal and deposit is relatively slow, for the sake of modelling simplicity we 
have ignored this effect. Therefore the velocity boundary conditions employed are no-slip 
conditions on all walls. The crystal geometry was 5.0 by 1.0 and the finite element mesh employed 
had 32 elements in the x-direction and 16 elements in the y-direction. The temperature boundary 
conditions were 1.0 on the hot vertical wall and 0.7 on the cold wall. Grey-body radiation 
boundary conditions were specified for all walls. Reference 9 presents the results for a number of 
test cases. The case simulated here is for a Grashof number Gr= 1.0 x lo5 and Nr= 10. Nr is a 
non-dimensional radiationsonduction parameter which shows the relative importance of radi- 
ation to conduction. This number is similar to the Radiation number mentioned earlier. These 
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Figure 7(a). Kassemi's crystallization problem: temperature contour plot 
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Figure 7(b). Kassemi's crystallization problem: temperature along the bottom wall 
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Figure 7(c). Kassemi's crystallization problem: temperature along the top wall 

Figure 8. Kassemi's crystallization problem: streamline contour plot 
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values are equivalent to a Radiation number of 3-0 (reference temperature of lOOO), a Reynolds 
number of 1.4286, a Prandtl number of 0.7 and a Rayleigh number of 2.33 x lo5. Each vertical 
wall is considered to be a single radiation macrosurface and each horizontal wall 10 surfaces. All 
radiation surfaces are assumed black. In this problem the Navier-Stokes equations including 
buoyancy effects together with the energy equation were solved. Eighteen iterations were required 
to achieve convergence using successive substitutions with a relaxation factor of 0.4. The 
convergence criterion was that the change in the solution vector was less than 1.0 x for all 
solution quantities. Figures 7(ab7(c) correspond to temperature distribution in the domain of the 
problem and along the bottom and top walls. Figure 8 shows the streamlines of the computed 
solution; these show excellent qualitative agreement with the results presented in References 9 
and 17. In these plots the vertical direction has been expanded by a factor of five. 

Flow in a vertical open-ended channel 

In this problem the effect of different combinations of modes of heat transfer is studied. The 
geometry is a vertical 2D channel with a heat-generating step and convection cooling on the outer 
wall opposing the chip. The conditions are such that flow with a uniform temperature enters the 
channel, passes over the step and then leaves the system. Figure 9 shows the geometry as well 
as the boundary conditions and the input data. Figure 10 depicts the finite element mesh and 

open end 1 ref, temp = 1-81 

I 

Convection to ref, temp = 1.B 
h = 2.45 e -2 

vol.  exp. 1,6937 e 4 
specific heat 1 8.73 
density : 1.3698 
Stefan-Boltman no. = 8.588766 
no slip wall conditions assumed 

open end 
specified Uy : 1.8 
Fluid Temp = 1,8 
Ref. Temp = 1,8 

Figure 9. Open-ended channel: geometry and boundary conditions 
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ELEMENT 
MESH PLOT 

Figure 10. Open-ended channel: finite element mesh 

A VERTICAL CHANNEL, RAD rT I ON SURFACES 

1 

1 

ELEMENT 
EDGE PLOT 

Figure 11. Radiation surfaces for the open-ended channel 
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Figure 12(a). Open-ended channel: velocity profile when all modes of heat transfer are active 
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Figure 12(b). Open-ended channel: temperature distribution for the different modes of heat transfer 
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Figure 11 illustrates the eight radiating surfaces: each open end was specified as one macrosur- 
face; the three surfaces that covered the step (specified as blocking) were each one macrosurface; 
the remaining three walls were also specified as radiating surfaces with an emissivity of 0.88. The 
solid was assumed to be 10 times as conductive as the fluid. A Prandtl number of 0.73 and a 
Reynolds number of 1-3698 were specified for the fluid. Four cases were studied (a) conduction 
only, (b) conduction and radiation, (c) conduction and convection and (d) all three modes 
combined. In this analysis buoyancy effects were ignored. Successive substitution was the solution 
method-used with relaxation factor of 0-6 when radiation was present and 0-0 when radiation 
was not considered. Case (a) converged in one iteration, (b) in 10, (c) in two and (d) in nine. The 
convergence criterion was set to a default value of 0.001. Figure 12(a) shows the velocity field and 
Figure 12(b) the temperature distribution for each case. It is clear that radiation and convection 
both reduce the overall temperature. In this problem radiation has a dominant effect. 

Electronics-packaging problem 

To demonstrate the ability to analyse complex problems, a more realistic example from the 
field of electronics packaging was considered. A two-cell vertical channel with heat-generating 

conducting 

Conducting El- mater Ial 

2.335 

a r w  r a d i a t i o n  

Figure 13. Electronics-packaging problem: complex geometry and boundary conditions 
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Table I. Material properties of the complex problem (all units are in watts, seconds, inches) 

Properties of air 

Density = 1.929 x lo-' 
Viscosity = 4-689 x 
Specific heat = 1005 
Conductivity = 6.655 x 
Volume expansion = 00033 at a reference temperature = 300 

conductivity of the solid and porous materials 

Porous base = 0 9 4  
Chip packages = 0.038 
Package leads = 3.8 
Central heat sink = 1-143 
Caging = 1.70 

Properties of the radiative surfaces 
Emissivity = 0.88 
Stefan-Boltzmann constant = 3.6577 x lo-" 

Permeability of the diflerent porous materials 

Porosity = 0.48 
Permeability = lo-' in the direction normal to the plane of the material 

Heat transfer coeficient at the outer walls 

h = 6.45 x at reference temperature = 300 



1050 M. ENGELMAN AND M.-A. JAMNIA 

Figure 15. Electronics-packaging problem: radiation surfaces 

chips was modelled; the bottom and top portions as well as the sides of the channel were 
comprised of porous materials. The left-hand channel had two heat-generating steps and the 
right-hand channel included only one chip. The two channels were connected by a heat- 
conducting material. The inner walls were assumed to be grey-diffuse surfaces and there was 
convection to the environment from the outer walls. The complete geometry is shown in 
Figure 13 while Figure 14 depicts the finite element mesh employed. Table I summarizes the 
various material properties. For this simulation the full Navier-Stokes equations including 
buoyancy effects and the energy equation were solved. 

For radiation boundary condition specification purposes, 49 radiating surfaces were defined; 
these surfaces are shown in Figure 15. Note that the 27 surfaces in the middle of the com- 
putational domain were defined as blocking surfaces for view factor calculation purposes. 
Figure 16 shows the resultant temperature distribution for an emissivity of 0 8  while Figure 17 
shows the velocity field for the fluid as it passes through the system. To investigate the effects 
of radiation on the resultant temperature field, three different values of wall emissivity were 
employed (e=0.1,0.1, 08). The chip emissivity remained constant ( e = 0 8 8 )  for all three cases. 
Similar to the previous cases, the method of solution was successive substitution with a relaxation 
factor of 0.9. The no-radiation case converged in 19 iterations while the radiation cases took 
44 iterations. Figure 18 shows the temperature profile over the chips and the opposing wall in the 
left channel while Figure 19 depicts the temperature profile over the chip and the opposing wall in 
the other channel. Although the results indicate that for this particular system radiation does not 
have a significant effect on the resultant temperature distribution, the radiative interaction 
between the chip and the walls becomes more influential in reducing the temperature as the wall 
emissivity increases. 
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Figure 16. Electronics-packaging problem: temperature distribution 

VELOCITY 
VECTOR PLOT 

SCALE FACTOR 
.5000Et02 

MAX. VECTOR 
PLOTTED 
.2237Et00 

AT NODE 1943 

SCREEN LIMITS 
XMlN -.117Et01 
XMAX .117Et01 
W I N  .000Et00 
YMAX ,398Et01 

FIDAP 5.04 
I 2  Sep 90 

10: 11 156 

1051 

Figure 17. Electronics-packaging problem: velocity field 
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F F E C T S  OF R A D I A T I O N  I N  ELECTRONICS PACKAGING 
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Figure 18. Electronics-packaging problem: temperature along the two chips 
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Figure 19. Electronics-packaging problem: temperature along a line over one chip 
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FINAL REMARKS 

In this paper we have described an algorithm for solving fluid flows coupled with the grey-body 
radiation boundary condition. The introduction of two features-the decoupling of the solution 
of the radiation exchange equation from the solution of the continuum equations and the 
introduction of the concept of macrosurfaces-has resulted in a viable approach for solving 
realistic problems involving grey-body radiation exchange. We believe further algorithmic 
development is needed to reduce the requirement for relatively high relaxation factors to obtain 
convergence, which in turn results in larger number of iterations. 
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